
Development of a Spaceborne Embedded Cluster

Daniel S. Katz and Paul L. Springer
Jet Propulsion Laboratory

California Institute of Technology
{Daniel.S.Katz, Paul.L.Springer,’@pl.nasa.gov

Abstract

Over the last decade and continuing into the
foreseeable future, a trend has developed in the
spacecraft industry of both number of missions and the
amount of data taken by each mission increasing faster
than bandwidth capabilities to send these data to Earth.
The result of this trend is a bottleneck between data
gathering (on-board) and data analysis (on the ground.)
This bottleneck can be overcome by performing -data
analysis on-board and only transferring the results ofthis.
analysis to the ground, rather than the raw data. One
attempt to do this is being made by the NASA HPCC ”

Remote Exploration and Experimentation (ME) Project,
which is developing spaceborne embedded clusters.
Spaceborne embedded clusters share many
characteristics of traditional, ground-based clusters such
as POSIX-compliant operating systems and message-
passing applications, but also have signvicant
differences, including packaging and the need for fault-
tolerance and real-time scheduling in software. This
paper discusses these similarities and differenkes, and
how they impact application development.

1. INTRODUCTION
9

Over the last decade, the National Aeronautics and
Space Administration (NASA) has adopted a new strategy
for its spacecraft missions: “better, faster, cheaper.” In
September 1992, NASA Administrator Daniel S. Goldin
told the World Space Congress “We must push out
beyond our comfort zone, and make ourselves build
spacecraft smaller, faster, and cheaper.” Later, “better”
replaced ‘‘smaller’’ in this phrase. One of the results of
this strategy is that many smaller (and cheaper) missions
are taking the place of a few large (and expensive)
missions. However, the capabilities ,Qf the
communication systems used to operate these missions
have not correspondingly increased [l] . While the
number of missions is increasing, the capabilities of the
instruments on these missions are also increasing. They
are providing data at ever increasing rates, far faster than
is feasible to send the data to Earth, and the rate of growth
of the data from the instruments is also faster than the rate
of growth of bandwidth to Earth, so this problem will
only get worse in the future. (Even though recent events
have cast some doubts on the current implementation of
the “better faster, cheaper” strategy and it will probably

undergo some changes in the near future, it is very
unlikely that NASA will return to an overall strategy of
fewer, more expensive missions.)

One obvious answer to this problem is to process the
data where it is collected, and to return only the results of
the analysis to Earth, rather than the raw data. Similarly,
processing data and autonomously making decisions on-
board spacecraft will eliminate the problem of latency

I between Earth and space. Many events that we wish to
observe, and,record are both short-lived and unpredictable,
and thus, do not allow an observer on Earth to modify the
behavior of. a spacecraft as would be needed. For
example, a gamma-ray burst may be observed by a
spacecraft with a large field-of-view detector, which
could then autonomously change orientation to aim a
more detailed instrument at the source of the burst. If an
astronomer on the ground had to command this action, it
is likely the burst, or some large part of it, would be
complete before the spacecraft was ready to observe it.

Traditionally, very little data analysis has been done in
space, and what has been done has relied on radiation-
hardened processors. These architectures are quite old by
the time they complete the radiation-hardening process,
and do not solve the problems of bandwidth and latency.
One solution is an embedded cluster of COTS
(Cottimercial-Off-The-Shelf) processors, where the
processors can be selected and placed in the system
shortly before mission launch. In as much as COTS
processors are not radiation hardened, this requires
software that can detect and correct errors caused by the
cosmic ray environment found in space. Such a system is
being developed by the Jet Propulsion Laboratory under
the Remote Exploration and Experimentation (REE)
Project [2].

The constraints of the space environment (mass,
power, volume, resistance to vibration, shock, thermal
cycling and natural space radiation) demand work in
packaging that is very different than for most ground-
based clusters. Additionally, replacement of faulty
components is either impossible or extremely expensive,
and uploading new or changing existing software is very
difficult from a system design as well as operational
perspective. Finally, reliability of the software as well as
the hardwarelsystem is a significant concern due to the
difficulty in validating computational results, and the
potential impact of erroneous behavior with respect to
decision making and scientific data analysis. Thus, a

mailto:Paul.L.Springer,�@pl.nasa.gov

different set of requirements exists for spaceborne
computers than for ground-based computers.

2. HARDWARE REQUIREMENTS

Form factor is a critical factor in embedded computing.
Thus compute density (GFlops per cubic foot and GFlops
per watt) is often as or more important than aggregate
processing power. Typically, embedded system vendors
are able to achieve roughly a factor of 10 increase in
compute density over conventional systems. These gains
are achieved by constructing boards containing multiple
nodes (typically 2 or 4). Each node consists of a low
power processor (e.g., Motorola PowerPC) with a limited
amount of memory (e.g. 128 MBytes). In addition, there
are no local disks and access to the node is limited to the
interconnect, which may be custom or commodity (e.g.
Myrinet, though the interconnect form factor may be a
problem), and will have been packaged to minimize size
and power consumption. These various design tradeoffs
allow embedded vendors to fit nearly 100 processing
nodes in a volume that can fit underneath a typical office
desk.

As mentioned previously, many embedded systems
need to withstand much more severe conditions than
standard clusters. These systems may be used in the
aerospace or military industries, leading to requirements
on tolerance to shock, vibration, radiation, thermal
conditions, etc. While many of today's commercial
components can handle these conditions, they are not
packaged to do so, as this increases cost and is not needed
by most ordinary users. Thus, for this niche market,
different vendors have sprung up to package standard
commercial parts with more consideration of these
concerns.

There are a variety of vendors that manufacture
systems along the above lines. Mercury, CSPI and Sky
are three of the more popular systems. Some of the
general capabilities are shown below [3]. In addition, for
comparison, a tradition cluster system built at JPL is also
shown.

TABLE I:
COMPAFUSON OF COMMERCIAL EMBEDDED SYSTEMS

, .

In addition to these vendors that specialize in
embedded systems, a number of other companies build
embedded systems, both parallel and distributed for their
customers. These vendors may take systems from the
standard vendors listed above and ruggedize and/or
repackage them, and they include many US defense

contractors (Lockheed, Honeywell, General Dynamics,
etc.)

3.' THE REMOTE-EXPLORATION AND
EXPERIMENTATION PROJECT

Within the NASA High Performance Computing and
Communications (HPCC) Program, the Remote
Exploration and Experimentation (REE) Project at the Jet
Propulsion Laboratory (JPL) intends:

To bring commercial supercomputing
technology into space, in a form which meets the
demanding environmental requirements, to
enable a new class of science investigation and
discovery.

~ , _

Specifically, the project will:

. Dei-hohstrate a process for rapidly transferring
commercial high-performance computing
technology into ultra-low power, fault-tolerant
architectures for space.

Demonstrate that high-performance onboard
processing capability enables a new class of
science investigation and highly autonomous
remote operation.

. I

The' project consists of three initiatives: applications,
computing testbeds, and system software. The purpose of
the applications initiative is to demonstrate that the unique
high-performance low-power computing capability
developed by the project enables new science
investigation and discovery. In order to do this, five
ScienCe"App1ication Teams (SATs) were chosen to
develop 'scalable science applications, and to port these to
REE testbeds running REE system software. The
applicatibns are meant to be developed on standard
ground-based clusters, and then ported to the REE
embedded cluster with minimal changes. The needs of
the applications also lead to requirements on the system
software, and ensure that the hardware and system
software meet the needs of the NASA spaceborne
applications community. The set of SATs will change
over time to increase the project's exposure to NASA
missions and to help the project understand the needs of
newly,proposed missions.

.Undet the testbed initiative, an initial testbed (a cluster
composed of PCs running Linux connected by Fast
Ethernet) 'was built and used for initial applications
demonstrations. The next testbed (the first generation
embedded scalable computing testbed,) which is designed
to operate at least at 30 MOPS/watt', is currently being
built, and is scheduled to be delivered in September 2000.

' MOPS are Millions of Operations per Second, where operations
are both floating point and integer. For a spaceborne embedded
computer, performance per unit power is a key metric.

I /

,, 1

, .

S !

This testbed consists of 40 commodity off-the-shelf
(COTS) processors connected by a COTS network fabric.
Through future RFPs (Requests For Proposals), the
project will obtain additional testbeds that perform faster
while using less power (at least 300 MOPSlwatt). Criteria
that are required of the testbeds are: consistency with
rapid (18 month or less) transfer of new Earth-based
technologies to space, no single point of failure, and
gracell degradation in the event of hardware failure.

The purpose of the system software initiative is to
provide the services required to let the applications make
as full a use as possible of the hardware while assuring
reliable operation in space and providing an easy-to-use
development environment. Much like the hardware, the
system software is intended to use commercial
components as much as possible. The major challenge for
the system software is to develop a middleware layer
between the operating system and the applications that
accepts that both permanent and transient faults will occur
and provides for recovery from them.

4. FAULT -TOLERANCE REQUIREMENTS

The spaceborne embedded cluster described in this
paper is being designed with certain characteristics. that
impact fault-tolerance requirements [4]. They are:

[l] The REE system is not intended for use in high
radiation environments such as the Van Allen Belts
or the Jovian System. This is key to the ability to use
non-radiation hardened components, and thus gaiQ a
two to three generation advantage over available
radiation hardened flight computers.

2. The REE system is being designed primarily for the
processing of science data, rather than hard (vs. soft)
real time, mission critical, spacecraft control
functions. Thus, occasional resets, rocessing delays,
and possibly even dropped frames or other service
interruptions are potentially acceptable. The
advantage here is that the use of non-replicated fault
tolerance techniques with concomitant advantages in
powerlperformance is permitted.

3 . The system is intended, with appropriate replication
techniques, such as software implemented ’ triple-
modular-redundancy, to be capable of performing a
limited range of high-reliability, operate-through, real
time tasks. This will be, at least initially, in a
segregated portion of the system which will operate
in a relatively poor power/performance mode
(providing only a 2.5 to 3.0 power/performance
improvement over available radiation hardened
computers vs the expected 1OX improvement in the
rest of the system). This segregation of real time

P

“Frame” is used in this paper to mean an iteration of an
application’s main loop of the form: input a set of data, process the data,
and output the processed data. A dropped frame is thus an incomplete
iteration of the loop, where no processed data is output for given set of
input data.

. . ,

activities will allow the system to perform these types
of tasks if necessary, but with resultant penalties. In
the future, the possibility of performing real time
tasks in a minimally- or non-replicated and non-
segregated mode will be investigated.

The s‘cience applications are generally MPI programs
that are not replicated and therefore can take full
advantage of the computing power of the hardware.
(However, we also will support Triple or Quad Modular
Redundancy (TMR/QMR) in software for smaller
applications that require high reliability, as opposed to
high availability.) As the processors are COTS
components, they are not radiation-hardened, and will
suffer from faults. The primary concerns for the REE
environments, i.e., Low Earth Orbit (LEO),
Geosynchronous Earth Orbit (GEO), and Deep Space
(DS), are transient errors induced by natural Galactic
Cosmic Rays (GCR’s) and energetic protons. The
principal faults are single bit flips (also known as single
event upsets or SEUs) in memory and registers on the
CPU. (Note: memory off the CPU will be error-detecting
and corfecting - EDAC.) Current understanding and
modeling indicate that the REE first generation testbed
would see approximately 1 single bit fault per CPU-hour
in either the GEO or DS environments, and approximately
7 single bit faults per CPU-hour in the LEO environment
[4] :

These error rates require that the applications and
system software be self-checking, or tolerant of errors.
The’.REE Project’s goal is to minimize the changes that
the developer of the application has to make, and to make
the’ application as portable as possible between various
parallel systems, whether these are standard clusters,
embedded clusters, or massively parallel processors. In
order to do this, much of fault-tolerance must be pushed
onto the Bystem software or middleware, either hidden
from the application or in the form of tools that the
application can choose to use.

One example of this is research in Algorithm-Based
Fault Tolerance (ABFT) techniques, and development of
ABFT libraries for linear algebra and Fourier analysis
tasks<shared by the applications [SI. As an example, the
fine optical control application from NGST (Next
Generation Space Telescope, see section V) consists of
three’ parts: phase retrieval (Misell algorithm), phase
unwrapding, and actuator fitting. Approximately 70% of
the CPU .time spent in the phase retrieval code is used to
pe r fod FFTs. An ABFT wrapper for the version of the
distributed FFT that is being used (FFTW [6]) has been
written that will allow the application to determine if this
routine completed correctly, or if an SEU occurred during
the calculation, in which case the FFT can be repeated.
There are two versions of the ABFT library, “nake” and
“expert”. ’ The “nayve” library is a simple library
replacement that is not seen by the application. The calls
to the library are identical, and the only changes that must
be hade are an additional include file and a new library in
the link command. With this version, the application will

. .

, , ,

,) .

attempt the FFT a preset number of times, each time
checking for correctness within a preset tolerance, and if
each fails, then abort to a higher level of middleware
control. The "expert" version allows the application more
control over the results. The tolerance used for
determination of correctness and the behavior upon
failure can be changed, perhaps allowing the application
to use a partially correct result and move on.

An example of the required middleware is an
application manager. REE is currently working with
Chameleon [7], which can be thought of as an application
manager. It starts the application, performs checks of its
progress, and restarts the application if needed. For the
REE science applications, which are generally frame-
based, restarting the application means that the frame that
was being processed when the application crashed is the
starting point when the application is restarted. Other
applications may need automated check-pointing
schemes. Of course, Chameleon itself must also be fault-
tolerant. This is an example of the classical paradox: sed
quis custodiet ipsos custodes? (Who will watch the
watchers? [SI)

Because the current MPI standard (1.2) does not allow
dynamic MPI processes, when any one processor fails the
complete job must be restarted. While this is reasonable
for jobs where all the processors are working together on
solving one large problem, some of the REE applications
are in a different category, where fairly large amounts of
work may be assigned by a master to some number of
slaves, with the master integrating the results'.: In this
case, the failure of any one slave only should mean that
the work being done by that slave should be reassigned to
another slave, as long as the work units are fairly
independent. REE will likely build or adapt an
application manager (e.g.; MW [9]) for this paradigm; as
well.

Additionally, the system must deal with two'types of
hardware failures: complete node failure, long-lasting
andlor permanent faults which cause a node' to ' be
unusable; and partial node failure, long-lasting and/or
permanent faults which only effect part of a node (i.e.;
one memory bank) so that the node is degraded. In both
cases, the system software may notice a large number of
errors on a given processor, and decide to take that
processor out of the active cluster for testing. 'Any
software that was running on the processor must be
migrated to another processor, if possible by transparently
moving it, or else by stopping it and restarting it on the
new set of processors. A new processor may be available
from the set of cluster resources that are currently on-line,
or it may have to be brought on-line, or for reasons of
power or limited resources, no new processors may be
available. These requirements imply system management
with control of hardware similar to those of a traditional
cluster's system administrator and the ability to make
tradeoffs between application, power, and mission
requirements, which can be particularly difficult when
partial node failure exists. A software-implemented

system administrator (SISA) that will be developed by the
REE Project will perform this management function.

5. APPLICATIONS

The first round of Science Application Teams consists
of the following five teams:

Gamma-ray Large Area Space Telescope
(GLAST): This team, led by Prof. Peter
Michelson (Stanford) and Prof. Toby Burnett (U.
of Washington) will examine detection of
gamma rays in a sea of background cosmic rays
(about 1 in 10,000 events will be a gamma ray),
and reconstruction of the gamma-ray trajectory.

Mars, Rover Science: Dr. R. Steven Saunders
(JPL) leads this team, which has two
applications. First, texture analysis and image
segmentation are used to identify various
materials on Mars for further scientific analysis.
Second, images obtained from a stereo camera

' i?e halyzed for use in autonomous navigation.

Next Generation Space Telescope (NGST): Led
by Dr.'John Mather (Goddard Space Flight
Center'- GSFC), this team also has two
applications. The first is to perform multiple fast
reads of the charge coupled devices (CCDs)
which take the telescope images in order to
eliminate or reduce the effect of cosmic rays
wliich hit these CCDs during an exposure. The
second is to perform fine optical control by using
arwavefront sensing algorithm to control a
deformable mirror.

Orbiting Thermal Imaging Spectrometer (OTIS):
This team is led by Prof. Alan Gillespie (U. of
Washington). They are designing an application
to take hyperspectral imaging data and retrieve
temperature and emissivity, as well as
performing spectral matching and unmixing,
then image classification.

Solar Terrestrial Probe Project (STP): This team,
led by Dr. Steven Curtis (GSFC), is examining
using'fleets of spacecraft for two applications:
radio astronomical imaging and plasma moment
analysis.

, , 1 %

* ,

These 'alpplications take advantage of large amounts of
" -

computing, as well as performancelpower ratios that are
at least ,an order of magnitude above those available in
today's spacecraft. They are attempting to implement and
test new approaches to science data processing and
autonomy. ,They have all delivered parallel code to the
REE project,, 'and currently 7 of the 9 codes have been
successfully, ,mn on an embedded cluster.

The initial applications development aims at running
the applications on the testbed without fault-detection or
fault-recovery. Once the applications run successfully,

-

. ..

these topics will be addressed through the development of
an applications programming guide. This will define an
interface between the application and the middleware,
including progress messages, error reporting, application-
specified checkpointing, ABFT calls, and other tools that
will be developed. This is intended to be a living
document, because the REE Project plans to iteratively
test applications using both random and focussed fault-
injection, and to use the results of these experiments to
modify or add to the set of tools available to the
application. We are eager to collaborate with others in
examining, developing and testing these tools. The
overall iterative process should drive down the number of
undetected and therefore uncorrected faults to a
sufficiently low number for the environment in which
each mission will operate to satisfy the mission scientist
and to be similar in scale to other errors that are
commonly accepted, including instrument noise; and
transmission errors. ~‘

I , i . 1 .
, ,

6. PRELIMINARY CONCLUSIONS
, , ,

, : , I

I I) ‘ ,

Understanding application behavior in an environmeit
where faults may occur at any time and any^ place is
challenging. This was made obvious at a recent
demonstration of the REE testbed system. At one.point in
the demonstration, after a fault was injected, the program
became stuck in an infinite loop. When this happens, the
application manager software (Chameleon) is supposed to
detect a lack of progress, and restart the application.
Unfortunately, a call to the application manager was
inside the loop that became infinite, reporting (falsely,,in
this case) that progress was being made. These calls were
made at regular intervals, and fooled the application
manager into believing that they were legitimate. This
incident and others has led to changes in the initial
thinking about what programming guidelines work best in
such an environment.

Two possible solutions to the above problem were
proposed. One such proposal was that the application use
multiple progress indicators. Thus the application would
issue a progress call to indicator n just before entei-ing the
loop. Within the loop, only progress calls to indicator I r n
would be issued. If the above problem were to occur ‘in
this case, after a predefined interval, the application
manager would have a timeout on progress indicator n,
and would therefore restart the application. An
alternative solution would be for the program not to issue
progress calls unless it had independently verified that
progress was actually being made.

Any programming guidelines should of course suggest
following good programming practices such as always
checking for errors. In addition, because the program will
operate in an “anything can happen” environment, it can
not safely assume that its current state is consistent. ‘For
example, even though a program design may call for two
variables to have values that are always correlated, an
SEU may change this. One of the unresolved islhes is

, ,

. . , . d t < $,

, t .

. .

how to handle this kind of situation while still minimizing
the impact on the application programmer of operating in
an environment with faults. As the REE project’s
experience in this area increases, it is likely that many
other interesting issues will also arise.

The REE project is still fairly young, but our
experience to this point looks promising for the future of
the project. We have a number of problems to solve, but
none seem intractable, and we are convinced that our
model of moderately fault-tolerant applications on
embedded COTS clusters in space will play a major role
in many future NASA missions.

7. ACKNOWLEDGEMENTS

This:.research was carried out at the Jet Propulsion
Laboratpry, California Institute of Technology, under a
contract,, with the National Aeronautics and Space
Administration. The authors also acknowledge helpful
conversations with Jeremy Kepner (MIT Lincoln
Laboratory) and Raphael Some (JPL).

8. REVERENCES
. , , , t. e .

’, ,

[I] W:’Schober, F. Lansing, K. Wilson, E. Webb, “High Data
Rate tnstrument Study,” JPL Publication 99-4, JPL, Pasadena,
California, 1999.

[2] Remote, Exploration and Experimentation Project Plan,
March 1999, http://ree.jpl.nasa.gov/.

[3] D. S.; Katz and J. Kepner, Embedded Clusters, in A
Whitepaper on Cluster Computing, submitted to International
Journal of High-Performance Applications and
Supercqmputing, April 2000.

[4]‘J: iieahan, L. Edmonds, R. D. Ferraro, A. Johnston, D. S.
Katz,”and R. R. Some, “Detailed Radiation Fault Modeling of
the Remote Exploration and Experimentation (REE) First
GeneYatibnfsTestbed Architecture,” Proceedings of IEEE
Aerospace Conference, IEEE, 2000.

[5],M. , k;rmon and R. Granat, “Algorithm-Based Fault
Tolerance, ,,,for Spaceborne Computing: Basis and
Implementations,” Proceedings of IEEE Aerospace Conference,
IEEE, 2000.

[6]Fastest Fokier Transform in the West, http://m.fmV.org/.

[7]Z. Kalbarczyk, S. Bagchi, K. Whisnant, R. Iyer,
“Chaheleon: A Software Infrastructure for Adaptive Fault
Tolerance,” IEEE Transactions on Parallel and Distributed
Cbmputing, pp. 560-579, June 1999.

[SI Juvenal, Satura VI, circa 115 A. D.

[9] J.’:P,!k3oux, S. Kulkarni, J. Linderoth, and M. Yoder, “An
Enabling Framework for Master-Worker Applications on the
Computational Grid,” Proceedings of the Ninth IEEE
International Symposium on High Performance Distributed
Computing, pp. 43-50, IEEE Computer Society, 2000.

. .. ,

. .

. ,
. . / . ‘ , I I

,~ ,

http://ree.jpl.nasa.gov
http://m.fmV.org

